Accomplishments

Brain-region specific epileptic seizure detection through EEG dynamics: Integrating spectral features, SMOTE and long short-term memory networks.
- Abstract
Investigating neural dynamics through EEG signals offers valuable insights into brain activity, especially for automated seizure detection. The identification of epileptogenic zones is crucial for effective epilepsy treatment, particularly in surgical planning. This work introduces a novel method for seizure detection using EEG signals, designed to benefit clinicians by integrating spectral features with Long Short-Term Memory (LSTM) networks, enhanced by brain regionspecific analysis. This research work captures critical frequency domain characteristics by extracting pivotal spectral features from EEG data, thereby improving the signal representation for LSTM networks. Additionally, this proposed work has employed the Synthetic Minority Over-sampling Technique (SMOTE) to handle the class imbalance problem. Furthermore, a comprehensive spatial analysis of EEG signals is performed to evaluate performance variations across distinct brain regions, enabling targeted region-wise analysis. This strategy effectively reduces the number of channels required, minimizing the need to process all 22 channels specified in the CHB-MIT dataset, thus significantly decreasing computational complexity while preserving high seizure detection performance. This work has obtained a mean value of accuracy of 95.43%, precision of 95.46%, sensitivity of 95.59%, F1-score of 95.48%, and specificity of 95.25% for the brain region providing the best performance for seizure discrimination. The results demonstrate that integrating spectral features and LSTM, augmented by spatial insights, enhances seizure detection performance and hence assists in identifying epileptogenic regions. This tool enhances clinical applications by improving diagnostic precision, personalized treatment strategies, and supporting precise surgical planning for epilepsy, ensuring safer resection and better outcomes. Keywords Epilepsy, Spectral features, SMOTE, LSTM, Brain lobes, Epileptogenic zone